Welcome!
Why We Teach
What We Teach
The Reasons Behind Maneuvers and Regulations

Thomas P. Turner
Executive Director, ABS Air Safety Foundation
NAFI Life Member
On bottom of screen click **HD Control** to select the resolution you wish to view

Access course archive on nafinet.org/mentorlive
Why We Teach
What We Teach
The Reasons Behind Maneuvers and Regulations

Thomas P. Turner
Executive Director, ABS Air Safety Foundation
NAFI Life Member
Regulations

<table>
<thead>
<tr>
<th>Title</th>
<th>Volume</th>
<th>Chapter</th>
<th>Browse Parts</th>
<th>Regulatory Entity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title 14 Aeronautics and Space</td>
<td>1</td>
<td>I</td>
<td>1-59</td>
<td>FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>60-109</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>110-199</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>II</td>
<td>200-399</td>
<td>OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>III</td>
<td>400-1199</td>
<td>COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>V</td>
<td>1200-1299</td>
<td>NATIONAL AERONAUTICS AND SPACE ADMINISTRATION</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VI</td>
<td>1300-1399</td>
<td>AIR TRANSPORTATION SYSTEM STABILIZATION</td>
</tr>
</tbody>
</table>
Maneuvers

<table>
<thead>
<tr>
<th>Title</th>
<th>Publication Date</th>
<th>Change Date</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Pilot — Airplane Airman Certification Standards (FAA-S-ACS-7A) (PDF)</td>
<td>June 2018</td>
<td>n/a</td>
<td>Effective June 11, 2018</td>
</tr>
<tr>
<td>Commercial Pilot — Military Competence Airman Certification Standards (FAA-S-ACS-12) (PDF)</td>
<td>August 2018</td>
<td>n/a</td>
<td>Effective October 15, 2018</td>
</tr>
<tr>
<td>Instrument Rating Airman Certification Standards (FAA-S-ACS-8B) (PDF)</td>
<td>June 2018</td>
<td>n/a</td>
<td>Effective June 11, 2018</td>
</tr>
<tr>
<td>Private Pilot - Airplane Airman Certification Standards (FAA-S-ACS-6B) (PDF)</td>
<td>June 2018</td>
<td>n/a</td>
<td>Effective June 11, 2018</td>
</tr>
<tr>
<td>Remote Pilot – Small Unmanned Aircraft Systems Airman Certification Standards (FAA-S-ACS-10A) (PDF)</td>
<td>June 2018</td>
<td>n/a</td>
<td>Effective June 11, 2018</td>
</tr>
</tbody>
</table>
Why?
Correlation

Associating what has been learned, understood, and applied with previous or subsequent learning.

Application

The act of putting something to use that has been learned and understood.

Understanding

To comprehend or grasp the nature or meaning of something.

Rote

The ability to repeat something back which was learned, but not understood.

LIVE
Why We Teach What We Teach

- VFR minimums
- Lazy 8
- Minimum safe altitudes
- V_{MC} demonstration
VFR Minimums
VFR Minimums

“3 152s”

and

“5 F-111s”
VFR Minimums

“3 152s” and “5 F-111s”

• Three miles visibility
• 1000 feet above clouds
• 500 feet below clouds
• 2000 feet laterally from clouds

• Five miles visibility
• 1000 feet above clouds
• 1000 feet below clouds
• 1 mile laterally from clouds
VFR Minimums

<table>
<thead>
<tr>
<th>Airspace</th>
<th>Altitude</th>
<th>Day/Night</th>
<th>Mnemonic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class A</td>
<td>No VFR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class B</td>
<td>Three miles, clear of clouds</td>
<td>3 152s</td>
<td></td>
</tr>
<tr>
<td>Class C</td>
<td>3 152s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class D</td>
<td>3 152s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class E</td>
<td>< 10,000 MSL</td>
<td>3 152s</td>
<td></td>
</tr>
<tr>
<td>Class E</td>
<td>> 10,000 MSL</td>
<td>5 F-111s</td>
<td></td>
</tr>
<tr>
<td>Class G</td>
<td>< 1200 AGL</td>
<td>Day</td>
<td>1 mile, clear of clouds</td>
</tr>
<tr>
<td>Class G</td>
<td>Night</td>
<td>3 152s</td>
<td></td>
</tr>
<tr>
<td>Class G</td>
<td>> 1200 AGL but < 10,000 MSL</td>
<td>Day</td>
<td>1 mile, 152s</td>
</tr>
<tr>
<td></td>
<td>Night</td>
<td>3 152s</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 10,000</td>
<td>5 F-111s</td>
<td></td>
</tr>
</tbody>
</table>
The Real Purpose of VFR Minimums

<table>
<thead>
<tr>
<th>Airspace</th>
<th>Altitude</th>
<th>Day/Night</th>
<th>Mnemonic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class A</td>
<td>No VFR</td>
<td></td>
<td>No VFR</td>
</tr>
<tr>
<td>Class B</td>
<td>Three miles, clear of clouds</td>
<td></td>
<td>Three miles, clear of clouds</td>
</tr>
<tr>
<td>Class C</td>
<td>≥ 10,000 MSL</td>
<td>Day</td>
<td>3 152s</td>
</tr>
<tr>
<td>Class D</td>
<td>3 152s</td>
<td></td>
<td>3 152s</td>
</tr>
<tr>
<td>Class E</td>
<td>< 10,000 MSL</td>
<td></td>
<td>3 152s</td>
</tr>
<tr>
<td></td>
<td>> 10,000 MSL</td>
<td>Night</td>
<td>5 F-111s</td>
</tr>
<tr>
<td>Class G</td>
<td>< 1200 AGL Day</td>
<td>1 mile, clear of clouds</td>
<td>1 mile, 152s</td>
</tr>
<tr>
<td></td>
<td>Night</td>
<td>3 152s</td>
<td></td>
</tr>
<tr>
<td></td>
<td>> 1200 AGL but < 10,000 MSL</td>
<td>Day</td>
<td>1 mile, 152s</td>
</tr>
<tr>
<td></td>
<td>Night</td>
<td>3 152s</td>
<td>5 F-111s</td>
</tr>
<tr>
<td></td>
<td>> 10,000</td>
<td>5 F-111s</td>
<td></td>
</tr>
</tbody>
</table>

Clues:
1. Class A: No VFR
2. Class B: Three miles, clear of clouds
3. Class G:
 - Day: 1 mile, clear of clouds
 - Night: 3 152s

The **Real** Purpose of VFR Minimums
It’s not about loss of control…
...it’s not about flying into obstacles....
...it’s about separation from IFR traffic.
Lazy 8s
Lazy 8s

90° point
1. Bank 30° (approximate)
2. Minimum speed
3. Maximum altitude
4. Level pitch attitude

135° point
1. Maximum pitch-down
2. Bank 15° (approximate)

45° point
1. Maximum pitch-up attitude
2. Bank 15° (approximate)

180° point
1. Level flight
2. Entry airspeed
3. Altitude same as entry altitude

Entry
1. Level flight
2. Maneuvering or cruise speed (whichever is less or manufacturer’s recommended speed)
Lazy 8s

- Coordination of flight controls across a wide range of airspeeds and attitudes
- At no time are control pressures constant

But is there more to it?
“Rolling Gs”
“Rolling Gs”
“Rolling Gs”

90° POINT
1. BANK APPROX 30°
2. MINIMUM SPEED
3. MAXIMUM ALTITUDE
4. LEVEL PITCH ATTITUDE

135° POINT
1. MAX. PITCH-DOWN
2. BANK 15° (APPROX.)

180° POINT
1. LEVEL FLIGHT
2. ENTRY AIRSPEED
3. ALTITUDE SAME AS ENTRY ALTITUDE

45° POINT
1. MAX. PITCH-UP ATTITUDE
2. BANK 15° (APPROX.)

ENTRY:
1. LEVEL FLIGHT
2. MANEUVERING OR CRUISE SPEED WHICHEVER IS LESS OR MANUFACTURER’S RECOMMENDED SPEED.
Minimum Safe Altitudes

§91.119 Minimum safe altitudes: General.

Except when necessary for takeoff or landing, no person may operate an aircraft below the following altitudes:

(a) Anywhere. An altitude allowing, if a power unit fails, an emergency landing without undue hazard to persons or property on the surface.

(b) Over congested areas. Over any congested area of a city, town, or settlement, or over any open air assembly of persons, an altitude of 1,000 feet above the highest obstacle within a horizontal radius of 2,000 feet of the aircraft.

(c) Over other than congested areas. An altitude of 500 feet above the surface, except over open water or sparsely populated areas. In those cases, the aircraft may not be operated closer than 500 feet to any person, vessel, vehicle, or structure.

(d) Helicopters, powered parachutes, and weight-shift-control aircraft. If the operation is conducted without hazard to persons or property on the surface—

(1) A helicopter may be operated at less than the minimums prescribed in paragraph (b) or (c) of this section, provided each person operating the helicopter complies with any routes or altitudes specifically prescribed for helicopters by the FAA; and

(2) A powered parachute or weight-shift-control aircraft may be operated at less than the minimums prescribed in paragraph (c) of this section.
Minimum Safe Altitudes

Clues

§91.119 Minimum safe altitudes: General.

Except when necessary for takeoff or landing, no person may operate an aircraft below the following altitudes:

(a) Anywhere. An altitude allowing, if a power unit fails, an emergency landing without undue hazard to persons or property on the surface.

(b) Over congested areas. Over any congested area of a city, town, or settlement, or over any open air assembly of persons, an altitude of 1,000 feet above the highest obstacle within a horizontal radius of 2,000 feet of the aircraft.

(c) Over other than congested areas. An altitude of 500 feet above the surface, except over open water or sparsely populated areas. In those cases, the aircraft may not be operated closer than 500 feet to any person, vessel, vehicle, or structure.

(d) Helicopters, powered parachutes, and weight-shift-control aircraft. If the operation is conducted without hazard to persons or property on the surface—

(1) A helicopter may be operated at less than the minimums prescribed in paragraph (b) or (c) of this section, provided each person operating the helicopter complies with any routes or altitudes specifically prescribed for helicopters by the FAA; and

(2) A powered parachute or weight-shift-control aircraft may be operated at less than the minimums prescribed in paragraph (c) of this section.

…if a power unit fails, an emergency landing without undue hazard to persons or property on the surface.
Minimum Safe Altitudes

Clues

§91.119 Minimum safe altitudes: General.

Except when necessary for takeoff or landing, no person may operate an aircraft below the following altitudes:

(a) Anywhere. An altitude allowing, if a power unit fails, an emergency landing without undue hazard to persons or property on the surface.

(b) Over congested areas. Over any congested area of a city, town, or settlement, or over any open air assembly of persons, an altitude of 1,000 feet above the highest obstacle within a horizontal radius of 2,000 feet of the aircraft.

(c) Over other than congested areas. An altitude of 500 feet above the surface, except over open water or sparsely populated areas. In those cases, the aircraft may not be operated closer than 500 feet to any person, vessel, vehicle, or structure.

(d) Helicopters, powered parachutes, and weight-shift-control aircraft. If the operation is conducted without hazard to persons or property on the surface—

(1) A helicopter may be operated at less than the minimums prescribed in paragraph (b) or (c) of this section, provided each person operating the helicopter complies with any routes or altitudes specifically prescribed for helicopters by the FAA; and

(2) A powered parachute or weight-shift-control aircraft may be operated at less than the minimums prescribed in paragraph (c) of this section.

2 Over any congested area...or open air assembly of persons....
Minimum Safe Altitudes

Clues

§91.119 Minimum safe altitudes: General.

Except when necessary for takeoff or landing, no person may operate an aircraft below the following altitudes:

(a) Anywhere. An altitude allowing, if a power unit fails, an emergency landing without undue hazard to persons or property on the surface.

(b) Over congested areas. Over any congested area of a city, town, or settlement, or over any open air assembly of persons, an altitude of 1,000 feet above the highest obstacle within a horizontal radius of 2,000 feet of the aircraft.

(c) Over other than congested areas. An altitude of 500 feet above the surface, except over open water or sparsely populated areas. In those cases, the aircraft may not be operated closer than 500 feet to any person, vessel, vehicle, or structure.

(d) Helicopters, powered parachutes, and weight-shift-control aircraft. If the operation is conducted without hazard to persons or property on the surface—

(1) A helicopter may be operated at less than the minimums prescribed in paragraph (b) or (c) of this section, provided each person operating the helicopter complies with any routes or altitudes specifically prescribed for helicopters by the FAA; and

(2) A powered parachute or weight-shift-control aircraft may be operated at less than the minimums prescribed in paragraph (c) of this section.

3 Over other than congested areas…
Minimum Safe Altitudes

Clues

§91.119 Minimum safe altitudes: General.

Except when necessary for takeoff or landing, no person may operate an aircraft below the following altitudes:

(a) Anywhere. An altitude allowing, if a power unit fails, an emergency landing without undue hazard to persons or property on the surface.

(b) Over congested areas. Over any congested area of a city, town, or settlement, or over any open air assembly of persons, an altitude of 1,000 feet above the highest obstacle within a horizontal radius of 2,000 feet of the aircraft.

(c) Over other than congested areas. An altitude of 500 feet above the surface, except over open water or sparsely populated areas. In those cases, the aircraft may not be operated closer than 500 feet to any person, vessel, vehicle, or structure.

(d) Helicopters, powered parachutes, and weight-shift-control aircraft. If the operation is conducted without hazard to persons or property on the surface—

1. A helicopter may be operated at less than the minimums prescribed in paragraph (b) or (c) of this section, provided each person operating the helicopter complies with any routes or altitudes specifically prescribed for helicopters by the FAA; and

2. A powered parachute or weight-shift-control aircraft may be operated at less than the minimums prescribed in paragraph (c) of this section.

...over open water or sparsely populated areas... [no] closer than 500 feet to any person....
Minimum Safe Altitudes

Clues

§91.119 Minimum safe altitudes: General.

Except when necessary for takeoff or landing, no person may operate an aircraft below the following altitudes:

(a) Anywhere. An altitude allowing, if a power unit fails, an emergency landing without undue hazard to persons or property on the surface.

(b) Over congested areas. Over any congested area of a city, town, or settlement, or over any open air assembly of persons, an altitude of 1,000 feet above the highest obstacle within a horizontal radius of 2,000 feet of the aircraft.

(c) Over other than congested areas. An altitude of 500 feet above the surface, except over open water or sparsely populated areas. In those cases, the aircraft may not be operated closer than 500 feet to any person, vessel, vehicle, or structure.

(d) **Helicopters, powered parachutes, and weight-shift-control aircraft.** If the operation is conducted without hazard to persons or property on the surface—

1. A helicopter may be operated at less than the minimums prescribed in paragraph (b) or (c) of this section, provided each person operating the helicopter complies with any routes or altitudes specifically prescribed for helicopters by the FAA; and

2. A powered parachute or weight-shift-control aircraft may be operated at less than the minimums prescribed in paragraph (c) of this section.

5 Helicopters, powered parachutes and weight-shift....
What do these have in common?

1. If a power unit fails, an emergency landing without undue hazard to persons or property on the surface.
2. Over any congested area... or open air assembly of persons....
3. Over other than congested areas...
4. ...over open water or sparsely populated areas... [no] closer than 500 feet to any person....
5. Helicopters, powered parachutes and weight-shift....
Minimum Safe Altitudes

14 CFR 91.119

Not about protecting pilots or even passengers

About protecting persons on the ground from falling airplanes
V_{MC} Demonstration

- At least 3000 AGL
- Gear UP
- Flaps TAKEOFF
- Slow to V_{SSE} or V_{YSE} (whichever is higher)
- Critical engine idle, propeller windmilling
- “Good” engine to takeoff power
V_{MC} Demonstration

- Bank 5° into good engine
- Slow 1 knot/second
- Slowly increase pitch
- Decelerate to when FULL right rudder and 5° bank cannot counteract asymmetric thrust
- Airplane begins to yaw uncontrollably to the left
V_{MC} Demonstration

RECOVER

Simultaneously:

- Reduce power on good engine
- Decrease pitch
- Stop yaw
- Maintain heading
- Minimum altitude loss
5000 AGL
Altitude Horsepower Asymmetry
V_{MC} decreases
V_{SI} does not
V_{mc} Demonstration

RECOVER

At the FIRST sign of:

• Loss of directional control;

• Stall warning or indication; or

• Decreased power on the good engine
V_{MC} Demonstration

RECOVER

Simultaneously:
- Reduce power on good engine
- Decrease pitch
- Stop yaw
- Maintain heading
- Minimum altitude loss
V\textsubscript{MC} Demonstration

X. Multiengine Operations

Task: V\textsubscript{MC} Demonstration (AMEL, AMES)

Objective: To determine that the applicant exhibits satisfactory knowledge, risk management, and skills associated with a V\text{MC} demonstration.

Note: See Appendix 6: Safety of Flight and Appendix 7: Aircraft, Equipment, and Operational Requirements & Limitations

<table>
<thead>
<tr>
<th>Knowledge</th>
<th>The applicant demonstrates understanding of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA.X.B.K1</td>
<td>Factors affecting V\text{MC} and how V\text{MC} differs from stall speed (V\text{s}).</td>
</tr>
<tr>
<td>CA.X.B.K2</td>
<td>V\text{MC} (red line), V\text{MC-1} (blue line), and V\text{SE}-1 (safe single-engine speed).</td>
</tr>
<tr>
<td>CA.X.B.K3</td>
<td>Cause of loss of directional control at airspeeds below V\text{MC}.</td>
</tr>
<tr>
<td>CA.X.B.K4</td>
<td>Proper procedures for maneuver entry and safe recovery.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Risk Management</th>
<th>The applicant demonstrates the ability to identify, assess and mitigate risks, encompassing:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA.X.B.R1</td>
<td>Improper airplane configuration.</td>
</tr>
<tr>
<td>CA.X.B.R2</td>
<td>Maneuvering with one engine inoperative.</td>
</tr>
<tr>
<td>CA.X.B.R3</td>
<td>Distractions, loss of situational awareness, and/or improper task management.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Skills</th>
<th>The applicant demonstrates the ability to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA.X.B.S1</td>
<td>Configure the airplane in accordance with the manufacturer's recommendations, in the absence of the manufacturer's recommendations, then at V\text{MC}/V\text{SE}, as appropriate, and,</td>
</tr>
<tr>
<td>CA.X.B.S1a</td>
<td>a. Landing gear retracted.</td>
</tr>
<tr>
<td>CA.X.B.S1b</td>
<td>b. Flaps set for takeoff.</td>
</tr>
<tr>
<td>CA.X.B.S1c</td>
<td>c. Cowl flaps set for takeoff.</td>
</tr>
<tr>
<td>CA.X.B.S1d</td>
<td>d. Trim set for takeoff.</td>
</tr>
<tr>
<td>CA.X.B.S1e</td>
<td>e. Propellers set for high RPM.</td>
</tr>
<tr>
<td>CA.X.B.S1f</td>
<td>f. Power on critical engine reduced to idle and propeller windmilling.</td>
</tr>
<tr>
<td>CA.X.B.S1g</td>
<td>g. Power on operating engine set to takeoff or maximum available power.</td>
</tr>
<tr>
<td>CA.X.B.S2</td>
<td>Establish a single-engine climb attitude with the airspeed at approximately 10 knots above V\text{SE}.</td>
</tr>
<tr>
<td>CA.X.B.S3</td>
<td>Establish a bank angle not to exceed 5° toward the operating engine, as required for best performance and controllability.</td>
</tr>
<tr>
<td>CA.X.B.S4</td>
<td>Increase the pitch attitude slowly to reduce the airspeed at approximately 1 knot per second while applying rudder pressure to maintain directional control until full rudder is applied.</td>
</tr>
<tr>
<td>CA.X.B.S5</td>
<td>Recognize indications of loss of directional control, stall warning, or buffet.</td>
</tr>
<tr>
<td>CA.X.B.S6</td>
<td>Recover promptly by simultaneously reducing power sufficiently on the operating engine while decreasing the angle of attack as necessary to regain airspeed and directional control. Recovery should not be attempted by increasing the power on the simulated failed engine.</td>
</tr>
<tr>
<td>CA.X.B.S7</td>
<td>Recover within 20° of entry heading.</td>
</tr>
<tr>
<td>CA.X.B.S8</td>
<td>Advance power smoothly on the operating engine and accelerate to V\text{SE}/V\text{SE} as appropriate, ±5 knots during recovery.</td>
</tr>
</tbody>
</table>
The task involves demonstrating the ability to identify, assess, and mitigate risks, encompassing improper airplane configuration, maneuvering with one engine inoperative, and distractions, loss of situational awareness, and/or improper task management.

The skills required include:

1. Configuring the airplane in accordance with the manufacturer’s recommendations, in the absence of the manufacturer’s recommendations, then at V_{SS}/V_{SG}, as appropriate, and:
 - Landing gear retracted
 - Flaps set for takeoff
 - Cowling set for takeoff
 - Trim set for takeoff
 - Propellers set for high RPM
 - Power on critical engine reduced to idle and propeller windmilling
 - Power on operating engine set to takeoff or maximum available power
 - Establish a single-engine climb attitude with the airspeed at approximately 10 knots above V_{SS}
 - Establish a bank angle not to exceed 5° toward the operating engine, as required for best performance and controllability
 - Increase the pitch attitude slowly to reduce the airspeed at approximately 1 knot per second while applying rudder pressure to maintain directional control until full rudder is applied
 - Recognize indications of loss of directional control, stall warning, or buffet
 - Recover promptly by simultaneously reducing power sufficiently on the operating engine while decreasing the angle of attack as necessary to regain airspeed and directional control. Recovery should not be attempted by increasing the power on the simulated failed engine
 - Recover within 20° of entry heading
 - Advance power smoothly on the operating engine and accelerate to V_{SS}/V_{SG}, as appropriate, +5 knots during recovery.
V_{MC} Demonstration: The Real Lesson

ANY Single-engine operation

At the **FIRST** sign of:

- Loss of directional control;
- Stall warning or indication;
 or
- Decreased power on the good engine

RECOVER using the V_{MC} recovery technique
Engine failure: Feather propeller

Attempting climb: Directional control difficult

Full rudder: Loss of directional control

V_{MC} recovery

Engine failure: Feather propeller

Demonstration: The Real Lesson
V_{MC} Demonstration: The Real Lesson

Engine failure: Feather propeller

Slowing into pattern: Directional control difficult

Full rudder: Loss of directional control

V_{MC} recovery
Why We Teach What We Teach

- Regulations
- Maneuvers

"circus trick"
Why We Teach What We Teach

• VFR minimums
• Lazy 8
• Minimum safe altitudes
• V_{MC} demonstration
Why We Teach What We Teach

Why?
Questions?
Challenge & Response for General Aviation

LIVE

Earn WINGS! Credit

Course Evaluation
Upcoming Broadcasts

Upcoming broadcasts

June 28th, 2018 8:00 PM "FAA Exam - Test for Student or Instructor?"
Presented by Captain Judy Rice, Founder of Think Global Flight. Frederick Nauer, 2015 Flight Instructor Hall of Fame Honoree & Mike Thompson, CFI and retired college dean.

Do you feel like an assigned driver or perhaps the security guard at the local department store when sending your student for the FAA Knowledge or Practical Exam? Does your student arrive in a cold sweat, biting nails, and twitching before the exam? How about the international student that clicks and nods when you asked him to bring the throttle idle? Or the domestic student following how great the landings were after a crosswind on final.

Join us gaining greater confidence for you and your student during this MentorLive broadcast. You will discover tips and lessons learned on topics such as: Preparing domestic and international students for the FAA Knowledge and Practical Exam, student knowledge versus instructor, the role of published materials, encouraging serious students, and more. We sure to bring your questions and share a lesson learned.

Click here to sign up/join the broadcast!

Archived broadcasts

Archived broadcasts

Qualifies for FAA Wings Credit!

Click here to watch!

April 18th, 2018 "Stop Teaching About Safety" Presented by Thomas R. Turner ATR(CFI), MD.

Qualifies for FAA Wings Credit!

Click here to watch!

SPONSORED THIS MONTH BY: A.isnan
Notice:
The National Association of Flight Instructors or Aeronautical Proficiency Training do not provide technical or legal advice. Content is for general information and discussion only, and is not a full analysis of the matters presented. The information provided may not be applicable in all situations, and participants should always seek specific advice from the Federal Aviation Administration and/or appropriate technical and legal experts (including the most current applicable guidelines) before taking any action with respect to any matters discussed herein.